Investigation of the antioxidant potential of black oat, rye and wheat cereals through multi-response extraction optimization with different solvents

Authors

  • Ivisson de Souza Tasso Universidade Federal do Paraná
  • Deocleciano Cassiano de Santana Neto Universidade Federal do Paraná
  • Thainnane Silva Paiva Universidade Federal do Paraná
  • Anely Maciel de Melo Universidade Federal do Paraná
  • Luiz Mario de Matos Jorge Universidade Federal do Paraná / Universidade Estadual de Maringá
  • Regina Maria Matos Jorge Universidade Federal do Paraná

DOI:

https://doi.org/10.4025/actascitechnol.v47i1.70768

Keywords:

Mixture design; phenolic profile; ABTS; DPPH; FRAP.

Abstract

Cereals possess functional and nutritional properties already consolidated in the literature; they are also an excellent source of health-promoting bioactive compounds. This work aimed to determine the best solvents to extract phenolic compounds from black oat, rye, and wheat through a simplex centroid design, using pure solvents and binary and ternary mixtures. The response variables were the total phenolic compounds (TPC) and the antioxidants (DPPH, ABTS, FRAP) were quantified. For optimized extract, the phenolic compounds were identified by UHPLC. An optimization study for the recovery of antioxidant compounds from these cereals to obtain extracts with better antioxidant properties is reported. The water and acetone binary mixture extracted 18, 49, and 110% more than water and 3.2, 4.0, and 5.5 times more than TPC acetone for black oat, rye, and wheat, respectively. Chromatography identified that rye has the highest number of phenolic compounds, including vanillic acid (3008.64 μg g-1), ellagic acid 352.05 μg g-1, hesperetin 24.33 μg g-1, and formononetin. To conclude, the binary mixture of water and acetone was the best condition to obtain a maximized extract for the analyses in the optimized proportions of solvents for the extract are as follows: 0.52/0.48 for oats, 0.46/0.54 rye and 0.33/0.67 for wheat, respectively. This study optimizes the time and improves quality in measuring antioxidants, both for cereals and derivatives, and for evaluating the potential of new products.

Downloads

Download data is not yet available.

References

Barros Santos, M. C., Ribeiro da Silva Lima, L., Ramos Nascimento, F., Pimenta do Nascimento, T., Cameron, L. C., & Simões Larraz Ferreira, M. (2019). Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Research International, 124, 118-128. https://doi.org/10.1016/j.foodres.2018.08.034
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Boscariol Rasera, G., Hilkner, M. H., de Alencar, S. M., & de Castro, R. J. S. (2019). Biologically active compounds from white and black mustard grains: An optimization study for recovery and identification of phenolic antioxidants. Industrial Crops and Products, 135, 294-300. https://doi.org/10.1016/j.indcrop.2019.04.059
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Deng, G.-F., Xu, X.-R., Guo, Y.-J., Xia, E.-Q., Li, S., Wu, S., Chen, F., Ling, W.-H., & Li, H.-B. (2012). Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. Journal of Functional Foods, 4(4), 906-914. https://doi.org/10.1016/j.jff.2012.06.008
Đorđević, B. S., Todorović, Z. B., Troter, D. Z., Stanojević, L. P., Stojanović, G. S., Đalović, I. G., Mitrović, P. M., & Veljković, V. B. (2021). Extraction of phenolic compounds from black mustard (Brassica nigra L.) seed by deep eutectic solvents. Journal of Food Measurement and Characterization, 15(2), 1931-1938. https://doi.org/10.1007/s11694-020-00772-y
Evtyugin, D. D., Magina, S., & Evtuguin, D. V. (2020). Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules, 25(12), 2745. https://doi.org/10.3390/molecules25122745
Hadidi, M., Garcia, S. R., Ziogkas, D., McClements, D. J., & Moreno, A. (2023). Cereal bran proteins: recent advances in extraction, properties, and applications. Critical Reviews in Food Science and Nutrition, 64(29), 1-25. https://doi.org/10.1080/10408398.2023.2226730
Hernandez, Y., Lobo, M., & Gonzalez, M. (2009). Factors affecting sample extraction in the liquid chromatographic determination of organic acids in papaya and pineapple. Food Chemistry, 114(2), 734-741. https://doi.org/10.1016/j.foodchem.2008.10.021
Ivanović, M., Islamčević Razboršek, M., & Kolar, M. (2020). Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants, 9(11), 1428. https://doi.org/10.3390/plants9111428
Kaur, J., Gulati, M., Singh, S. K., Kuppusamy, G., Kapoor, B., Mishra, V., Gupta, S., Arshad, M. F., Porwal, O., Jha, N. K., Chaitanya, M. V. N. L., Chellappan, D. K., Gupta, G., Gupta, P. K., Dua, K., Khursheed, R., Awasthi, A., & Corrie, L. (2022). Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends in Food Science and Technology, 122, 187-200. https://doi.org/10.1016/j.tifs.2022.02.023
Kaur, P., Purewal, S. S., Sandhu, K. S., Kaur, M., & Salar, R. K. (2019). Millets: a cereal grain with potent antioxidants and health benefits. Journal of Food Measurement and Characterization, 13(1), 793-806. https://doi.org/10.1007/S11694-018-9992-0/TABLES/3
Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. International Journal of Molecular Sciences, 23(13), 7273. https://doi.org/10.3390/ijms23137273
Luo, Y.-W., Xie, W.-H., Jin, X.-X., Wang, Q., & He, Y.-J. (2014). Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes. CyTA - Journal of Food, 12(1), 22-26. https://doi.org/10.1080/19476337.2013.782071
Machado Dutra, J., Espitia, P. J. P., & Andrade Batista, R. (2021). Formononetin: Biological effects and uses - A review. Food Chemistry, 359, 129975. https://doi.org/10.1016/j.foodchem.2021.129975
Martí­nez-Noguera, F. J., Marí­n-Pagán, C., Carlos-Vivas, J., Rubio-Arias, J. A., & Alcaraz, P. E. (2019). Acute Effects of Hesperidin in Oxidant/Antioxidant State Markers and Performance in Amateur Cyclists. Nutrients, 11(8), 1898. https://doi.org/10.3390/nu11081898
Masisi, K., Beta, T., & Moghadasian, M. H. (2016). Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chemistry, 196, 90-97. https://doi.org/10.1016/J.FOODCHEM.2015.09.021
Melo, A. M. de, Barbi, R. C. T., Costa, B. P., Ikeda, M., Carpiné, D., & Ribani, R. H. (2022). Valorization of the agro-industrial by-products of bacupari (Garcinia brasiliensis (Mart.)) through production of flour with bioactive properties. Food Bioscience, 45, 101343. https://doi.org/10.1016/j.fbio.2021.101343
Mishra, L. K., Sarkar, D., Zwinger, S., & Shetty, K. (2017). Phenolic antioxidant-linked anti-hyperglycemic properties of rye cultivars grown under conventional and organic production systems. Journal of Cereal Science, 76, 108-115. https://doi.org/10.1016/j.jcs.2017.06.002
Moore, J., Hao, Z., Zhou, K., Luther, M., Costa, J., & Yu, L. (Lucy). (2005). Carotenoid, Tocopherol, Phenolic Acid, and Antioxidant Properties of Maryland-Grown Soft Wheat. Journal of Agricultural and Food Chemistry, 53(17), 6649-6657. https://doi.org/10.1021/jf050481b
Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., Ahmad, F., Babazadeh, D., FangFang, X., Modarresi-Ghazani, F., WenHua, L., & XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97, 67-74. https://doi.org/10.1016/j.biopha.2017.10.064
Nguyen, T., Nandasiri, R., Fadairo, O., & Eskin, M. N. A. (2023). The effect of pH on the phenolic content and antioxidant properties of three different mustard extracts. Journal of Food Science, 88(7), 2882-2901. https://doi.org/10.1111/1750-3841.16655
Palaiogiannis, D., Chatzimitakos, T., Athanasiadis, V., Bozinou, E., Makris, D. P., & Lalas, S. I. (2023). Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus creticus L. Leaves. Oxygen, 3(3), 274-286. https://doi.org/10.3390/oxygen3030018
Ragaee, S., Abdelaal, E., & Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98(1), 32-38. https://doi.org/10.1016/j.foodchem.2005.04.039
Rao, S., Santhakumar, A. B., Chinkwo, K. A., & Blanchard, C. L. (2019). Characterization of phenolic compound antioxidant activity in oat varieties using UHPLC - online ABTS and LC Q‐TOF. Cereal Chemistry, 96(5), 958-966. https://doi.org/10.1002/cche.10200
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3). https://doi.org/10.5344/ajev.1965.16.3.144
Turola Barbi, R. C., Teixeira, G. L., Hornung, P. S., Ívila, S., & Hoffmann-Ribani, R. (2018). Eriobotrya japonica seed as a new source of starch: Assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocolloids, 77, 646-658. https://doi.org/10.1016/j.foodhyd.2017.11.006
Uba, A. I., Zengin, G., Montesano, D., Cakilcioglu, U., Selvi, S., Ulusan, M. D., Caprioli, G., Sagratini, G., Angeloni, S., Jugreet, S., Hasan, M. M., & Mahoomodally, M. F. (2022). Antioxidant and Enzyme Inhibitory Properties, and HPLC - MS/MS Profiles of Different Extracts of Arabis carduchorum Boiss.: An Endemic Plant to Turkey. Applied Sciences, 12(13), 6561. https://doi.org/10.3390/app12136561
Wrigley, C. (2017). The Cereal Grains: Providing our Food, Feed and Fuel Needs. In Cereal Grains: Assessing and Managing Quality: Second Edition (pp. 27-40). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100719-8.00002-4
Yanagimoto, A., Matsui, Y., Yamaguchi, T., Hibi, M., Kobayashi, S., & Osaki, N. (2022). Effects of ingesting both catechins and chlorogenic acids on glucose, incretin, and insulin sensitivity in healthy men: A randomized, double-blinded, placebo-controlled crossover trial. Nutrients, 14(23), 5063. https://doi.org/10.3390/nu14235063
Yeo, J., & Shahidi, F. (2015). Critical evaluation of changes in the ratio of insoluble bound to soluble phenolics on antioxidant activity of lentils during germination. Journal of Agricultural and Food Chemistry, 63(2), 379-381. https://doi.org/10.1021/JF505632P
Yeo, J., & Shahidi, F. (2017). Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. Journal of Functional Foods, 38(B), 716-722. https://doi.org/10.1016/j.jff.2016.12.010
Yu, L., Haley, S., Perret, J., & Harris, M. (2002). Antioxidant properties of hard winter wheat extracts. Food Chemistry, 78(4), 457-461. https://doi.org/10.1016/S0308-8146(02)00156-5
Zamaratskaia, G., Gerhardt, K., & Wendin, K. (2021). Biochemical characteristics and potential applications of ancient cereals - An underexploited opportunity for sustainable production and consumption. Trends in Food Science and Technology, 107, 114-123. https://doi.org/10.1016/j.tifs.2020.12.006

Downloads

Published

2025-03-25

How to Cite

Tasso, I. de S. ., Santana Neto, D. C. de ., Paiva, T. S. ., Melo, A. M. de ., Jorge, L. M. de M. ., & Jorge, R. M. M. . (2025). Investigation of the antioxidant potential of black oat, rye and wheat cereals through multi-response extraction optimization with different solvents. Acta Scientiarum. Technology, 47(1), e70768. https://doi.org/10.4025/actascitechnol.v47i1.70768

Issue

Section

Science, Food Technology and Food Engineering

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

 

 

0.8
2019CiteScore
 
 
36th percentile
Powered by  Scopus

Most read articles by the same author(s)

1 2 > >>