<b>Self-organizing maps as a chemometric tool for aromatic pattern recognition of soluble coffee</b> - doi: 10.4025/actascitechnol.v34i1.10892
DOI:
https://doi.org/10.4025/actascitechnol.v34i1.10892Keywords:
self organizing maps, soluble coffee, electronic noseAbstract
The electronic nose (EN) is an instrument very used for food flavor analysis. However, it is also necessary to integrate the equipment with a multivariable pattern recognition system, and to this end the principal component analysis (PCA) is the first choice. Alternatively, self-organizing maps (SOM) had been also suggested, since they are a nonlinear and reliable technique. In this study SOM were used to distinguish soluble coffee according to EN data. The proposed methodology had identified all of the seven coffees evaluated; in addition, the groups and relationships detected were similar to those obtained through PCA. Also, the analysis of network weights allowed gathering the e-nose sensors into 4 groups according to the behavior regarding the samples. Results confirm SOM as an efficient tool to EN data pos-processing, and have showed the methodology as a promising choice for the development of new products and quality control of soluble coffee.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
DECLARATION OF ORIGINALITY AND COPYRIGHTS
I Declare that current article is original and has not been submitted for publication, in part or in whole, to any other national or international journal.
The copyrights belong exclusively to the authors. Published content is licensed under Creative Commons Attribution 4.0 (CC BY 4.0) guidelines, which allows sharing (copy and distribution of the material in any medium or format) and adaptation (remix, transform, and build upon the material) for any purpose, even commercially, under the terms of attribution.
Read this link for further information on how to use CC BY 4.0 properly.








8.png)



